- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Lin (2)
-
Yan, Zhiyong (2)
-
Ai, Sanxi (1)
-
Meng, Qingren (1)
-
Xiang, Xiao (1)
-
Xie, Renxian (1)
-
Zuza, Andrew V (1)
-
Zuza, Andrew V. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The closure of an ancient ocean basin via oceanic arc‐continent collision has two subduction styles with opposite polarities, which may proceed via subduction polarity reversal (SPR) or a subduction zone jump (SZJ). Interpreting the geometry or kinematic evolution of ancient collisional zones, especially the original subduction polarity, can be challenging. Here we used 2D thermo‐mechanical modeling to investigate the dynamic evolution process of SPR versus SZJ. Our modeling predicts different structural, topographic, magmatic, and basin histories for SPR and SZJ, which can be compared against, and help interpret, the geologic record past sites of oceanic closure during collisional orogens. Our results match geologic observations of past collisions in Kamchatka, eastern Russia, and the Banda Arc, eastern Indonesia, and thus our results can help effectively decode the evolutionary history of past arc‐continent collisions.more » « less
-
Yan, Zhiyong; Chen, Lin; Zuza, Andrew V.; Meng, Qingren (, Geological Society of America Bulletin)The accretion of future allochthonous terranes (e.g., microcontinents or oceanic plateaus) onto the southern margin of Asia occurred repeatedly during the evolution and closure of the Tethyan oceanic realm, but the specific geodynamic processes of this protracted convergence, successive accretion, and subduction zone initiation remain largely unknown. Here, we use numerical models to better understand the dynamics that govern multiple terrane accretions and the polarity of new subduction zone initiation. Our results show that the sediments surrounding the future terranes and the structural complexity of the overriding plate are important factors that affect accretion of multiple plates and guide subduction polarity. Wide (≥400 km) and buoyant terranes with sediments behind them and fast continental plate motions are favorable for multiple unidirectional subduction zone jumps, which are also referred to as subduction zone transference, and successive terrane-accretion events. The jumping times (∼3−20+ m.y.) are mainly determined by the convergence rates and rheology of the overriding complex plate with preceding terrane collisions, which increase with slower convergence rates and/or a greater number of preceding terrane collisions. Our work provides new insights into the key geodynamic conditions governing multiple subduction zone jumps induced by successive accretion and discusses Tethyan evolution at a macro level. More than 50 m.y. after India-Asia collision, subduction has yet to initiate along the southern Indian plate, which may be the joint result of slower plate convergence and partitioned deformation across southern Asia.more » « less
An official website of the United States government
